
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1-1-2005

Modulation of activator protein 1 (AP-1)
constituent protein levels by dietary energy
restriction (DER) before and after exposure to
ultraviolet B (UVB) radiation in SKH-1 mice
None None
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
None, None, "Modulation of activator protein 1 (AP-1) constituent protein levels by dietary energy restriction (DER) before and after
exposure to ultraviolet B (UVB) radiation in SKH-1 mice" (2005). Retrospective Theses and Dissertations. 18796.
https://lib.dr.iastate.edu/rtd/18796

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F18796&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F18796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F18796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F18796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F18796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F18796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/18796?utm_source=lib.dr.iastate.edu%2Frtd%2F18796&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Modulation of activator protein 1 (AP-1) constituent protein levels by dietary energy 
restriction (DER) before and after exposure to ultraviolet B (UVB) radiation in SKH-1 

mice 

by 

Brian D. Hopper 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Major: Toxicology 

Program of Study Committee: 
Diane F. Birt, Major Professor 

Kevin Schalinske 
Mark Ackermann 

Iowa State University 

Ames, Iowa 

2005 



www.manaraa.com

11 

Graduate College 
Iowa State University 

This is to certify that the master's thesis of 

Brian D. Hopper 

has met the thesis requirements of Iowa State University 

Signatures have been redacted for privacy 



www.manaraa.com

lll 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iv 

CHAPTER 1. GENERAL INTRODUCTION 1 
Introduction 1 
Dissertation Organization 2 
Literature Review 3 
References 26 

CHAPTER 2. EFFECT OF UVB RADIATION ON AP-1 CONSTITUENT 
PROTEINS AND MODULATION BY DIETARY ENERGY RESTRICTION IN 
SKH-1 MICE 41 

Abstract 42 
Introduction 43 
Materials and Methods 44 
Results 48 
Discussion 51 
Acknowledgements 56 
References 56 

CHAPTER 3. GENERAL CONCLUSIONS 67 
General Discussion 67 
References 71 

APPENDIX I 74 



www.manaraa.com

lV 

ACKNOWLEDGEMENTS 

I would like to take this time to thank the people in my life that made this possible. 

First, I would like to thank my major professor, Dr. Diane Birt, for allowing me the 

opportunity to pursue my M.S. in her lab. It has been an honor to work with a scientist as 

widely known and respected as Dr. Birt. I appreciate all her guidance and patience as I 

worked to achieve my goal. 

Second, I would like to thank the other members of my committee, Dr. Kevin 

Schalinske and Dr. Mark Ackermann, for taking the time to be on my committee and review 

my thesis. Your assistance has been much appreciated. 

I would also like to thank all the members of the Birt lab who have assisted in the 

numerous feedings and scrapings. I know that they don't come along too often, but they do 

require a lot of time and effort. Your help was invaluable. 

Finally, I would like to thank my family and friends, especially my parents. Without 

their love and guidance, this would have been a near impossible endeavor. Thank you all so 

much. 



www.manaraa.com

1 

CHAPTERl.GENERALINTRODUCTION 

Introduction 

Ultraviolet radiation has been known to cause skin cancer for many years. Extensive 

work has also been done that shows that excess caloric intake increases the risk of 

developing a number of different types of cancer [ 1-3]. Studies have shown dietary energy 

restriction (DER) to be a potent inhibitor of tumorigenesis in many animal studies [4-6]. 

However, the mechanism by which DER exerts its inhibitory effect has not been fully 

elucidated. The study contained in this thesis is an attempt to further our understanding of 

the mechanism by which DER is protective against tumor formation. Early studies from the 

Birt lab demonstrated that DER was effective in inhibiting tumor formation that was induced 

by the 7, 12-dimethyl-benz( a)anthracene (DMBA) initiated, 12-0-tetradecanoylphorbol-13-

acetate (TPA) promoted model [7;8]. One of the main areas ofresearch in the skin tumor 

arena is the transcription factor activator protein 1 (AP-1 ), due to its importance in tumor 

formation [9-11]. DER has been shown to inhibit dimethylbenz (a) anthracene (DMBA) 

initiated, 12-0-tetradecanoyl-l 3-phorbol-acetate (TPA) promoted induced increases in AP-

1 :DNA binding and c jun protein levels [7]. This study is an attempt to further our 

understanding in this area. 

To more closely mimic the formation of human skin tumors, the current study used 

the common human carcinogen UVB radiation to induce early molecular changes that would 

lead to the formation of skin tumors in SKH-lmice. Although SKH-1 mice are hairless, like 

nude mice, SKH-1 are immunocompetent because they have a functional thymus gland, 

which is lacking in nude mice. Impaired immune function could possibly alter the results 

AP-1 :DNA binding assays and AP-1 protein analysis. The thymus is important for the 

maturation of a class of lymphocytes known as T cells. There are two types of T cells, helper 

T cells and cytotoxic T cells [12]. Cytotoxic T cells function to destroy cells that are virally 
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infected or recognized as non-self. Tumor cells often express different surface antigens from 

normal cells. The cytotoxic T cells can recognize this and set out to destroy the tumor cells. 

The helper T cells can also assist in the body's natural defense against tumors. Helper T 

cells perform a wide variety of functions in the body. However, two main actions are 

specifically important in restricting the development of tumors. First, helper T cells activate 

macrophages, B cells, cytotoxic T cells, and natural killer cells that are designed to target and 

destroy abnormal cells. Secondly, helper T cells help induce the immune response. They 

secrete cytokines and interleukins that allow lymphocytes to communicate with one another 

[12]. 

The objectives of the study described herein were to: 1) examine the effects ofUVB 

treatment on AP-1 :DNA binding and AP-1 constituent protein levels in the epidermis of 

female SKH-1 mice and 2) determine the effect of DER on the changes caused by UVB. Our 

hypothesis was that DER would inhibit or decrease the intensity of some of the molecular 

alterations caused by UVB treatment. 

Thesis Organization 

This thesis attempts to enhance our current understanding of the molecular 

mechanisms by which DER inhibits skin carcinogenesis. It consists of three chapters. The 

first chapter includes a general introduction and literature review. The second chapter 

contains a paper entitled "Effect of UVB radiation on AP-1 constituent proteins and 

modulation by dietary energy restriction" that will be submitted to Carcinogenesis. This 

study was designed to test the hypothesis listed above. The third chapter contains general 

conclusions obtained from the experiment. Literature cited in each chapter is listed at the end 

of the chapter in the order in which they appear. 
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Literature Review 

Skin Cancer 

Skin cancer is the most commonly diagnosed type of cancer worldwide. The World 

Health Organization predicts that between two and three million skin cancers will be 

diagnosed in the world this year. Globally, one in every three cancers is skin cancer. In the 

U.S., the Center for Disease Control predicts that one in five people will be diagnosed with 

skin cancer in their lifetime. 

Skin cancer can be divided into two main categories, melanoma and non-melanoma. 

Non-melanoma skin cancer can further be classified into two main subdivisions, basal cell 

carcinomas (BCC's) and squamous cell carcinomas (SCC's), depending on the area of the 

skin from which the cancer cell was derived. Basal cell carcinomas are derived from basal 

cells located at the dermal/epidermal junction. BCC' s are the most common type of skin 

cancer, making up more than 70% of all diagnosed skin cancers [13]. BCC's are usually not 

aggressive; it has been estimated that only 0.05% ofBCC' s metastasize [14]. SCC's are the 

second most common type of skin cancer. SCC's arise from squamous cells located within 

the epidermis of the skin. About 20% of all skin cancers are SCC's [15;16]. SCC's are more 

aggressive than BCC' s with about 2-3% of diagnosed SCC's metastasizing [17-19]. Even 

though the chance of metastasis is low for both types of non-melanoma skin cancer, both 

BCC's and SCC's are locally aggressive and show a high propensity for recurrence [20]. 

Melanomas, as the name suggests, are derived from melanocytes which are located in the 

stratum basale of the epidermis and hair follicle epithelium. Melanomas are one of the least 

common, but most aggressive form of skin cancer. There are many other types of cancer that 
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can occur in the skin, including carcinomas of the apocrine gland, sebaceous gland, 

Langerhans cells, fibroblasts and endothelial cells, but these are much less common than 

BCC's, SCC's, or even melanomas. 

The development of cancer is a complicated process. The formation of cancer can be 

broken into three distinct phases. The first of these is initiation. There are two generally 

accepted mechanisms of initiation. The first is an interaction of the carcinogen with DNA, a 

protein, or membrane receptor that results in a change in gene expression. The second 

involves a change in the DNA of a single cell, resulting in a heritable defect [21]. This 

change can be due to a xenobiotic, environmental factor, or just an error in DNA replication 

as a cell divides [22]. If the mutation occurs in a coding sequence, it can result in an 

abnormal cell. This abnormality can be expressed in a variety of ways. One way the 

abnormality can be expressed is in the proteins produced in the cell. Another way the 

abnormal cell can be recognized is by the loss of growth regulation. The outcome of a single 

mutation is dependent on the gene that is altered. If the error is not corrected and the cell is 

allowed to proliferate, the second step of carcinogenesis can occur. This phase is called 

promotion. During the promotion phase, a mutated cell that has been given a growth 

advantage of some kind is selected for increased proliferation. This can be accomplished by 

a variety of mechanisms, such as up-regulation of mRNA or alteration of post-translational 

modifications within the cell. Often, the promoting agent increases the activity of cellular 

kinases or enhances the transcription of gene products that lead to cellular proliferation. For 

example, promotion of skin tumors by TP A is accomplished in part by increasing the activity 

of extracellular-signal related kinase (ERK) [23]. ERK can phosphorylate the cellular 

protein c jun, which can dimerize and activate transcription of a number of genes important 
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in cell proliferation. In any case, the initiated cell usually divides at an increased rate leading 

to hyperplasia and, eventually, a benign tumor or papilloma. The third phase of 

carcinogenesis is called progression or transformation into malignancy. This is when a group 

of altered cells begin to invade the surrounding tissue. If the mutated cells invade the 

vasculature or lymphatic vessels, they can be transported throughout the body in a process 

known as metastasis. 

There are a number of common alterations that mutated cells often share during the 

progression to a carcinoma in the skin. The first of these is a mutation in the Ras gene 

[24;25]. Ras is a small monomeric, membrane bound G protein that has been classified as a 

proto-oncogene. Ras functions basically as a molecular switch for cell proliferation and 

differentiation [26]. When it is mutated, normal regulation of cell proliferation and 

differentiation can be interrupted. If the mutation is not corrected, excess proliferation can 

lead to hyperplasia and eventually cancer. Different initiating agents can cause different 

mutations in the Ras gene. For example, dimethylbenzanthracene (DMBA) causes A-7 T 

conversions in codon 61 of the Ha-ras gene in 90% of eventual papillomas [24] . In mice 

treated with N-nitroso-N-methylurea, the Ras gene was mutated at codon 12 by a G-7 A 

transition [27] in mammary tumors. Another experiment that studied the proto-oncogene Ras 

was conducted by Balmain et. al. In this experiment, SENCAR mice were initiated with 

DMBA and treated with the promoter 12-0-tetradecanoyl phorbol-13-acetate (TPA) to 

induce papillomas and carcinomas. The DNA from these tumors was extracted and 

transfected into NIH/3T3 cells. The transfectants were then assayed for transforming ability. 

Of the 5 papillomas examined, 4 gave positive results in the transformation assay. Similarly, 

of 3 carcinomas examined, 2 gave positive results in the transformation assay. When the 
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DNA of the transforming positive tumors was examined, it was seen that these tumors 

harbored a Ras gene mutation [28] . 

Another common mutation found in carcinomas of the epidermis is a mutation in the 

tumor suppressor gene p53 [29]. p53 functions by blocking the cell cycle at the G 1 phase if 

DNA damage is detected. If the damage is minor, p53 stalls the cell cycle by increasing 

binding of the retinoblastoma protein (Rb) to the E2F transcription factor until the damage is 

repaired. If the DNA damage is extensive, p53 triggers cell death via apoptosis. Ifthere is a 

mutation in the p53 gene, one of the major safeguards for proper cell division is removed. 

Without an active p53 protein, damaged DNA can be replicated and the initiated cell would 

be allowed to proliferate. DMBA has also been shown to be effective in initiating p53 

mutations. Once initiated, cells treated with TP A can progress to papillomas and eventually 

carcinomas. The mutation seen most often in the p53 gene generally appears to occur at 

codon 132 as a G-7C conversion. p53 mutations are common in skin cancer. A study by 

Ruggeri and colleagues examined 15 different cell lines, including one non-transformed, 

immortalized ketatinocyte line, three papillomas, four SCC's ranging in histopathological 

grade from Stage I to Stage III, and eight Stage IV anaplastic carcinomas for mutations in the 

p53 gene. They showed that in the more advanced tumors, there was an increased likelihood 

of a p53 mutation [30]. One study showed that as many as 90% of SCC's have p53 

mutations [31 ;32]. 

As a cell moves through the promotion stage onto progression, another major phase in 

the development of cancer is what is referred to as loss of heterozygosity. Because we carry 

2 copies of the same gene, there can be different levels of susceptibility to cancer, depending 

on the gene that is affected. If a mutation were to occur at both alleles, the resulting 
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homozygous genotype would result in only the mutant protein being expressed. For 

example, in a study with hairless mice, van Kranen et. al. examined the importance of loss of 

heterozygosity of the p53 gene. The induction of tumors was achieved by exposure to UVB 

twice daily at doses of 450 J/m2 or 900 J/m2• In double knockouts of p53, early onset 

lymphomas caused termination of the animals prior to skin tumor formation. p53+/- mice in 

the 900 J/m2 treatment dose developed tumors at a faster rate than the wild-type control 

animals. There was no difference between groups that received 450 J/m2• Also, 25% of the 

tumors in the heterozygotes were more advanced spindle cell carcinomas, while none of the 

tumors present on wild type mice had advanced to that point, suggesting that perhaps a 

mutation in the p53 tumor suppressor gene equates to increased invasiveness [33]. Bums 

et.al showed that sec in mice exhibited a loss of heterozygosity on chromosome 11 in the 

region of the p53 gene [34]. It has also been shown that SCC's in mice have often lost 

heterozygosity on chromosome 7 in the region of the Ras oncogene [35]. 

Chromosomal aberrations are also commonly seen in a number of different types of 

cancers as they begin to become invasive. Chromosomal aberrations include (1) 

rearrangement of DNA segments within chromosomes; (2) exchange of DNA segments 

between different chromosomes; and (3) aneuploidy or deviations from the normal diploid 

number of chromosomes in somatic cells. It was shown that in 12 of 12 benign papillomas 

and 10 of 11 SCCs in mice that there was trisomy of chromosome 6. The same study showed 

that 10 of 11 SCCs also exhibited trisomy of chromosome 7 in mice [36] . These findings are 

particularly interesting when one notes the sequence homology between mouse chromosome 

6 and human chromosome 7 [36] . 
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Ultraviolet Light and General Health Effects 

Ultraviolet light can have a number of different health effects on the body. Perhaps 

the most widely known among the general population is the increased incidence of skin 

cancer among people who are regularly exposed to UV light. The World Health 

Organization and the American Cancer Society have recognized a number of other effects 

attributable to UV radiation. UV activates melanin already present in the skin and also leads 

to an increased production of melanin from melanocytes. UV also causes the skin to lose its 

elasticity, leading to wrinkle formation and general aging. It can cause a thickening and 

drying of the epidermis, leading to a course, leathery look. In addition, UV radiation most 

often causes erythema (sunburn) in more fair skinned individuals. 

Most people generally think of the skin when asked about damage due to UV 

radiation. UV can also have effects on other parts of the body. For example, the eye is 

exposed to ultraviolet radiation on a regular basis. Excess UV exposure can result in 

photokeratitis (inflammation of the cornea) and photoconjunctivitis (inflammation of the 

membrane that lines the eyelids and the inside of the eye socket). Another eye malady 

thought to be associated with UV exposure is pterygium. This is a growth of the conjunctiva 

over the surface of the eye. Cataracts are also related to UV exposure. Although relatively 

rare, malignant melanomas of the eye do occur and can be attributed almost exclusively to 

long term exposure to UV radiation [3 7]. 

UV radiation can also result in suppression of the immune system. It has been shown 

that UV radiation can activate the tyrosine kinases located near the cell membrane. This 

activation can result in a cascade of events including activation of Ras, JNK, AP-1, and 

NFKB. Activation of these transcription factors results in the production of immune 
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regulatory cytokines, which can help suppress immune function [38]. For example, AP-1 

helps to regulate transcription of interleukin 10 (IL-10), a known suppressor of immune 

function and inflammation. UV has also been shown to induce suppressor T cells [39]. UV 

induced suppression of the immune system can have an impact on skin cancer formation. It 

has been shown that UV irradiation can induce prostaglandin (PG) formation. Increased PG 

formation can result in inflammation. The cells responsible for the inflammation often act by 

producing reactive oxygen species (ROS). These ROS may take part in transforming benign 

growths into malignant tumors [40]. 

In addition to the negative impact that ultraviolet radiation can have on immunity and 

cell activity, there are some positives attributes of UV exposure. For example, small 

quantities of UV are necessary for the stimulation of vitamin D production in the body. 

Vitamin Dis necessary to properly take up calcium and phosphorous from the diet. Vitamin 

D has also been shown to play a role in cell proliferation. In one study, Itin et. al. examined 

the effect of 1,25-dihydroxyvitamin D3 [1,25(0H)2D3], 25-hydroxyvitamin D3 [25(0H)D3], 

and vitamin D3 on cellular proliferation. They showed significant inhibition of cell 

proliferation in human keratinocytes with 1,25(0H)2D3 and 25(0H)D3 at concentrations 

greater than 10-7 M. Interestingly, concentrations less than 10-9 M resulted in enhanced 

proliferation [ 41]. In another study by Cross et. al. , Caco-2 cells were treated with 

1,25(0H)2D3 or one of two side chain metabolites. It was shown that in low Ca2+ media, all 

three treatments were able to inhibit thymidine incorporation. They also showed that all 

three compounds were able to stimulate alkaline phosphatase activity, suggesting an ability 

to induce differentiation [ 42]. Vitamin D has also been shown to be protective against UVB 

induced cellular damage. In a study using human keratinocytes, De Haes et.al. showed that 
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1,25(0H)2D3 given at a concentration of 1 µM for 24 hours prior to UVB treatment reduced 

apoptosis 55-70% and inhibited mitochondrial cytochrome c release by 90%. Pre-treatment 

with 1,25(0H)2D3 also reduced JNK activation by 30% and IL-6 mRNA expression by 75-

90% [43]. It must be noted that only very small quantities of UV are necessary for the 

production of adequate physiologic amounts of vitamin D. UV has also been successfully 

used to treat a number of illnesses including lupus, psoriasis, and vitiligo. Recently, it has 

also been suggested that a small amount of UV daily can be useful in the treatment of breast, 

prostate, and colon cancers [44;45]. 

Diet and Cancer Prevention 

The ability of a reduction in caloric intake to decrease the incidence of cancer has 

been known for around 100 years. One of the first papers to examine the effect of energy 

intake on the incidence of cancer was published in 1914 by Rous [ 46]. This study found that 

underfed mice showed reduced tumor growth and reduced recurrence of tumors. Another 

major pioneer in the arena of diet and cancer was Albert Tannenbaum. One study examined 

the effect of food intake on three different types of cancer. It was seen that underfeeding 

caused by a reduction in the number of calories from carbohydrates led to a delayed onset 

and decrease in the number of induced epithelial tumors, induced sarcomas, and spontaneous 

breast carcinomas [47] . In another study, it was shown that underfeeding resulted in a 

decrease in the number of spontaneous hepatomas and methylcholanthrene induced skin 

tumors in a mouse model [ 48]. It must be noted that these studies were different from work 

in this thesis in several important ways. First, both the control diet and calorie restricted diet 

used in Tannenbaum' s were comprised of Purina dog or fox chow combined with skim milk 

powder. For the additional calories necessary for the control diet, cornstarch was added to 
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the mix. Secondly, the animals in Tannenbaum's studies were given a constant amount of 

food daily for the duration of the experiment. In studies in this thesis, the energy restricted 

animals were given exactly 40% fewer calories than the ad libitum fed animals consumed the 

week before. Third, the diets in these experiments were prepared from purified ingredients, 

while Tannenbaum's were not. Lastly, studies in this thesis used an energy restricted diet 

that had fewer calories from both fat and carbohydrates. Tannenbaum only restricted calories 

in the form of reduced carbohydrates. Calories from protein were not restricted. This is 

because the studies by Tannenbaum and described here both used young animals (6-8 weeks 

old) and restricting protein could have negative impacts on the growth of muscle and 

important internal organs. 

Numerous studies, primarily in rodents, have attempted to unravel the complexities 

surrounding the anti-carcinogenic effect of dietary energy restriction. One of these studies 

examined the effects of calorie restriction and a diet high in olive oil supplemented with 

freeze dried fruits and vegetables. They found that both diets reduced body weight and the 

incidence of intestinal polyps in male APCMin mice when compared to freely fed control 

animals. They also showed that the calorie restriction group reduced serum levels of insulin­

like growth factor 1 (IGF-1) and leptin, but no such reduction was seen in the fruit and 

vegetable supplemented group. This suggests that there may be different mechanisms 

responsible for the prevention of tumors due to calorie restriction and diet modulation [49]. 

Another study that examined prevention of tumors by dietary energy restriction looked at 

multiple levels ofrestriction. Klurfeld et.al. subjected female Sprague-Dawley rats to 10%, 

20%, 30%, or 40% calorie restriction. Tumors were induced with DMBA given orally by 

gavage. Rats on 20% calorie restricted diet showed a slight decrease in mammary tumor 
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incidence and animals on 30% and 40% calorie restriction displayed a significant decrease in 

tumor incidence [50]. Another study examined whether energy intake or body fat 

composition was more important in the prevention of mammary tumors. Female F-344 rats 

were placed into one of four treatment groups: unrestricted sedentary, calorie restricted 

sedentary, unrestricted exercised, or calorie restricted exercised. It was shown that the 

calorie restricted sedentary rats showed an inhibition in the incidence of mammary tumors, 

but there was no inhibition in any other group. This suggested that energy restriction is more 

important than just carcass composition [51]. Many other relevant studies have taken place 

in the Birt lab. For example, it has been shown that dietary fat enhanced experimentally 

induced pancreatic, lung, liver, and kidney tumors in hamsters [52;53]. Much of the recent 

work in the our lab has focused on skin carcinogenesis. We have shown in previous work 

that calorie restriction (reduction of caloric intake from fat and carbohydrates with equal 

amounts of vitamins and minerals as control diet) was more effective at inhibiting skin 

carcinogenesis in the SENCAR mouse than is total diet restriction (underfeeding, resulting in 

lower micronutrient levels) [ 4]. Thus, it appeared that the reduction in calories is one of the 

more critical aspects to preventing cancer. It did not appear to matter that much whether the 

reduction in calories came from carbohydrate or fat, although animals with calories reduced 

via lowering fat did have smaller papillomas and fewer papillomas per animal than those 

with calories reduced via lower carbohydrates [5;8]. In an experiment designed to study the 

effects of fat and energy restriction in SEN CAR mice, animals were separated into six 

different groups. There were two different diets used in this experiment. One diet was made 

of 10% fat for the control (C) and one was comprised of 42% fat for high fat (HF). One 

group of mice was then freely fed the C diet and one was freely fed the HF diet. Each diet 
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was also given as 20% restricted (energy restricted control (ERIC 20) and energy restricted 

high fat (ER/HF 20)) and 40% restricted (ERIC 40 and ER/HF 40) of the freely fed amount 

consumed, resulting in the six diet groups. Animals were initiated with DMBA and 

promoted with TP A. Mice were placed on the specified diet during 18 weeks of TP A 

treatment and for 10 weeks following. It was discovered that papilloma and carcinoma 

incidence was decreased in the ERIC 20, ERIC 40, and ER/HF 40 in comparison to the other 

three diet groups. In addition, PKCa was reduced in the ERIC 20, ERIC 40, and ER/HF 40 

groups. PKC s was reduced in the ERIC 20 and ERIC 40 diet groups. This work shows that 

the amount of fat consumed in the diet, regardless of the calorie consumption, does play a 

role in the prevention of carcinogenesis [54]. 

In addition to the work above, there are some other people assessing energy 

restriction as it pertains to other types of cancer. For instance, it has been shown that 40% 

calorie restriction can decrease the amount of intestinal polyps, a precursor of intestinal 

tumors, by 57% [49]. It has also been shown that energy restriction is an effective inhibitor 

of mammary carcinogenesis in DMBA treated rats and that the energy restriction was most 

effective during the promotion phase of tumorigenesis [55;56]. It is important to note that 

early evidence suggests that the decrease in caloric intake is the important factor for the 

inhibition of carcinogenesis, not just lower body fat. In one study, exercise decreased both 

carcass fat and carcass energy but had no effect on mammary carcinogenesis [ 51]. 

There have been a few human studies which examined the effect of dietary fat on the 

incidence of skin cancer, particularly non-melanoma skin cancer. One two-year intervention 

study used patients who had been diagnosed with no more than two NMSC' s in the previous 

two years. There were 133 patients recruited for the study. Half of the patients were placed 
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on a diet in which the calories from fat were restricted to 20% of the total calories, while half 

of the patients were left on their normal "control" diet, in which 40% of the caloric intake 

came from fat. In addition to diet, risk due to age and history of actinic keratosis (AK) were 

analyzed. Patients in the control group that had no other risk factors showed higher 

incidence of AK with an odds ratio of 4. 7 compared to subjects in the low fat diet group. In 

addition, if the patient had all three risk factors (control diet, history of AK, and age over 65), 

there was an increased risk with an odds ratio of 8.4 [57;58]. 

There have also been a number of investigators who have looked at the relationship 

between cancer and caloric intake in humans. One study showed that countries with a high 

average daily caloric intake showed an increase in the incidence of all types of cancer, 

compared with countries whose daily caloric intake was lower [59]. It has been shown in a 

case control study in Canada that the average caloric intake in women diagnosed with breast 

cancer was higher than in women that were breast cancer free [60]. Numerous studies have 

shown an increased risk relationship between fat intake or the average number of calories 

consumed daily and colorectal cancer [ 61-63]. 

UV and skin cancer 

Ultraviolet light has been shown to be a complete carcinogen, meaning that it has the 

ability to both initiate and promote [64;65] [66]. UV radiation induces a number of cellular 

changes, many of them depending on the wavelength of incident light and the duration of 

exposure. UV A is thought to exert its cellular damaging effects by a secondary mechanism, 

namely the production of free radicals and reactive oxygen species such as hydrogen 

peroxide, singlet oxygen, and superoxide anion [67]. These reactive oxygen species are 

thought to contribute to DNA damage via the promotion of DNA to protein cross-linking. In 
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addition, UV radiation is known to generate hydroxyl radicals from the splitting of water. 

These radicals are thought to have a negative impact on cellular structures, especially on 

DNA where it can damage the guanine base specifically at the 8' position [68;69]. UVB, on 

the other hand, is thought to act by a more direct mechanism. This region of radiation (290-

320nm) is believed to induce mostly pyrimidine photoproducts (6-4 pyrimidine-pyrimidone 

products and pyrimidine dimers). In animals, both UVA and UVB have been shown to be a 

potent source of pyrimidine dimer formation, especially in lighter skinned individuals or 

individuals at increased risk for skin cancer due to a pre-existing condition [70;71]. 

There are a number of known changes that take place on a cellular and molecular 

level following treatment with UV radiation. It has been shown in animal models that 

following irradiation with UVB, cellular proliferation decreased significantly within one hour 

and stayed depressed for 7 hours. However, 72 hours after the irradiation, proliferation rates 

increased to almost 4 times the amount seen in untreated mice [64]. The rate of proliferation 

was mimicked by the rate of cellular DNA and protein synthesis. In both cases, synthesis 

rates were decreased for a short time following treatment with UVB and then increased to 

levels 5 times that of untreated cells. RNA synthesis behaved in a similar manner, but 

without the late induction over the non-irradiated controls. 

In addition to the changes in cellular growth, there are a number of different 

molecular changes that have been observed following treatment with ultraviolet radiation. 

Perhaps the most widely known damage caused by UV radiation is the formation of thymine 

dimers [72]. Another common product of UV radiation is base substitution. Most of these 

substitutions occur as C-7T or CC-7TT transitions, often occurring in the coding region of 

the p53 tumor suppressor gene due to the high concentration of cytosine bases present [32]. 
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The mutation in the p53 gene appears to be an important step in progression from damaged 

cell to actinic keratosis (AK) to skin cancer. In one epidemiological study conducted in New 

England, 24 patients with at least one actinic keratosis were examined. A biopsy of the AK 

was taken and the DNA was sequenced. Mutations in the p53 gene were found in 60% of the 

AK's examined [73]. This correlates well with data that has shown that >90% of SCC's and 

>50% of BCC's exhibit mutations in the p53 gene [31]. In a study examining 11 UV 

radiation induced murine skin tumors, there was a 100% incidence of p53 mutations seen, 

with most of these being manifested as C7T or CC7TT substitutions. In these 11 tumors, 7 

also showed multiple mutant alleles for p53, suggesting a significant amount ofloss of 

heterogeneity [74]. 

As stated earlier, mutations in the Ras oncogene are often observed in human 

carcinomas. In one study that looked at this oncogene, 24 primary human SCC' s, 16 primary 

human BCC's, and three NIH3T3 cell transformants were examined. Mutations in the Ras 

oncogene were observed in all three NIH3T3 lines. Also, 46% of the SCC's and 31 % of the 

BCC's showed a mutation in the Ha-Ras gene [75]. 

UV radiation can have other negative consequences on DNA in addition to base 

substitutions and deletions. It has been shown to induce DNA single-strand breaks in both 

"normal" human fibroblasts and fibroblasts taken from patients with Bloom's Syndrome, a 

recessive disease characterized by increased sensitivity to sunlight and susceptibility to 

cancer [76]. All mutations and DNA alterations present a large problem if not repaired. It 

has been shown that repair rates of UV damaged DNA is not the same throughout the 

genome. The transcribed strand of active genes is repaired much more quickly than the non­

transcribed strand. In addition, promoter regions of genes that often coincide with the 
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binding sites for transcription factors are repaired even more slowly [77]. There are also "hot 

spots" in certain genes, which are areas that are more highly susceptible to UV or other 

damage. 

There are areas of the cell that are affected by UV radiation other than the nucleus. 

For example, it has been shown in murine fibroblasts that UVB irradiation can result in 

phosphorylation of the epidermal growth factor receptor (EGFR), resulting in activation [78]. 

Because of the rapid phosphorylation of the EGFR, the effect seen may be due to a direct 

photon-membrane interaction [79]. It has also been observed that UV radiation can increase 

the activity of the stress-activated protein kinase c jun-NH2 terminal kinase (JNK), an 

enzyme important in the phosphorylation of the proto-oncogenic product c jun [80;81]. TP A 

has also been shown to produce effects similar to those seen following UV treatment, 

including increased AP-1 :DNA binding [7;82] and induction of c jun protein [7;83]. 

UV radiation has also been shown to induce inflammatory processes. It has been 

shown in cultured cells that UVB can increase the amount of the prostaglandins PGD2, PGE2, 

PGF2a, and their precursor, arachidonic acid. Some of the increases in these mediators of 

inflammation may be due to an increase in free arachidonic acid via an increase in the 

activity of phospholipase A2. PG's have also been shown to increase in response to ROS and 

UVB has been shown to increase the amount of oxygen radicals in the cell [84;85]. Another 

possible mechanism for the increase in the prostaglandins may be an increase in the activity 

of cyclo-oxygenase (COX) 2 [86;87]. These results are important to note because in both 

SCC's and BCC's taken from humans there have been increased levels of PGE2 and PGF 2a, 

potential products of the reaction catalyzed by COX-2. In addition, the increased levels of 

these PG' s have been correlated with an increase in histologically aggressive tumors [88]. 
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High levels of PG's have been shown to enhance the metastatic ability of a number of 

different kinds of cancers, including: breast [89], colon [90], pancreas [91], skin [92], 

prostate [93], and lung [94]. 

Transcription factors and tumor formation 

It has also been shown that a number of different nuclear transcription factors may 

play an important role in tumor formation. One such transcription factor is nuclear factor K 

B (NFKB). NFKB is responsible for regulating a large array of genes, including those 

encoding cytokines, adhesion molecules, acute phase proteins, and regulators of cell 

proliferation and apoptosis [95]. NFKB can be activated by bacterial LPS, viral infection, 

DNA damage or oxidative stress, and UV radiation [96;97]. Because of the many important 

genes regulated by NFKB, loss of control results in a variety of pathogenic states, including 

arthritis, asthma, cancer, and autoimmune diseases [95]. It has been shown that NFKB is 

constitutively active in a variety of human cancers [98-101]. 

Another important transcription factor in cellular signaling is the cAMP responsive 

element binding protein (CREB). CREB can be activated by a variety of stimuli, such as 

growth factors, cAMP, Ca2+, UV radiation, and cytokines [102;103]. There is evidencen that 

CREB is important in the regulation of intermediary metabolism, neuronal signaling, cellular 

proliferation, and apoptosis [104]. 

Another transcription factor that is important in tumor formation is activator protein-I 

(AP-1 ). The transcription factor AP-1 has been identified for about 20 years [105-107]. AP-

1 is composed of a dimer from two families of proteins. AP-1 is a transcription factor for a 

number of important cellular processes including proliferation, differentiation, and tissue 

remodeling [105;108;109]. It has also been shown that the transcriptional activity of AP-1 is 
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increased in some cancers [110-112]. Ultraviolet light has been shown to up-regulate AP-

1 :DNA binding [113; 114]. Activation of the transcription factor is accomplished by 

phosphorylation of the proteins involved followed by protein dimerization. The active dimer 

can be a homodimer of two jun family members ( c jun, jun B, jun D) or a heterodimer of one 

jun family member and one fos family member (c fos, fos B, fra-1, fra-2) [115]. It has been 

shown that two fos family proteins are unable to form a stable dimer, but that a jun:fos 

heterodimer is more stable than a jun:jun homodimer [l 07; 116]. AP-1 was originally shown 

to be important in basal gene expression and, shortly after, TPA inducible gene expression 

[105-107]. Since those original findings, the AP-1 transcription factor has been shown to be 

inducible by a variety of factors. One such factor is fetal calf serum [83]. Different cellular 

growth factors, including EGF and nerve growth factor [117; 118] have also been shown to 

have the ability to induce AP-1 in cell culture experiments. AP-1 has also been shown to be 

inducible by UV radiation [l 19;120]. It has been shown that induction of AP-1 by UV 

irradiation occurs primarily via a JNK dependent mechanism [ 121]. It has also been 

suggested that p38 may play a role in the activation by UV, both in cell culture [122] and in 

animals [123]. This is in contrast to the mechanism by which phorbol esters and many 

cellular growth factors have been shown to induce AP-1, namely down the ERK pathway 

[124]. 
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Figure 1. Signal transduction pathways induced by TP A and UV radiation. 

Because AP-1 is known to be important in cell proliferation and differentiation, it can 

be inferred that AP-1 will be important in cell cycle regulation. Experiments in Swiss 3T3 

cells suggest that the AP-1 constituent proteins do have an effect on cell cycle progression. 

Cells injected with antibodies directed against the jun family proteins resulted in inhibition of 

the cell cycle progression at the G1/S checkpoint while microinjection of anti-fos antibodies 

only slowed the progression [125]. However, injections of antibodies directed against single 

family members were less effective. AP-1 also plays a role in the control of a number of 

genes necessary for normal cellular growth and function. Not only has AP-1 been implicated 

in the control of normal cellular processes, it also has a role in apoptosis. It is known that 

AP-1 constituents, particularly c jun, participate in the regulation of cell cycle regulators such 

as p53, p21, p19, p16, and cyclin Dl [126]. AP-1 also controls a number of other genes in 
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the cell including collagenase [105], interleukin-2 [109], and other members of the matrix 

metalloproteinase family [108]. 

AP-1 can also have a significant impact on the ability of initiated cells to undergo 

promotion and progression. Extensive cell culture work in the area has given us a great deal 

of insight into this fact. Using the JB6 cell line, it has been shown that cells that are resistant 

to promotion do not induce AP-1 activation upon treatment with the tumor promoter TP A 

[127]. Further utilization of the JB6 cell line has shown that AP-1 activation is necessary for 

transformation to anchorage independence [128]. AP-1 activity is important in the process of 

invasion of transformed cells [129]. The large body of work in the cell culture arena 

prompted work in animal models as well. Numerous studies have indicated that AP-1 

activation is necessary during the promotion step of skin carcinogenesis [130;131]. This was 

done by developing a mouse line in which "transactivation mutant T AM67 is expressed 

specifically in the basal cells of the epidermis where tumor induction is initiated" [ 11]. 

T AM67 is a dominant negative form a c jun that is incapable of activating gene transcription 

important in tumor formation. Mice expressing T AM67 in the basal epidermis showed 

decreased TPA induced AP-1 :DNA binding and decreased papilloma formation [11 ]. 

With the ability of AP-1 to control so many vital genes playing roles in so many 

different cellular processes, one would expect a wide variety of regulatory mechanisms to be 

in place. This is exactly the case. First, there is evidence that there are different AP-1 :DNA 

binding affinities for active dimers composed of different constituents [116; 132]. In 

addition, the amounts of the different constituent proteins have been shown to account for the 

relative abundance of the different jun/fos heterodimers and jun homodimers [133]. The 

abundance of these subunits can be controlled by a few different methods. One is through 
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the regulation of synthesis and degradation rate of the mRNAs that encode each protein. 

Another method ofregulation is the stability of the protein itself. Post-translational 

modifications such as phosphorylation [l 15;134;135] and protein-protein interactions may 

also play a role [136]. 

Each AP-I constituent has its own distinct properties along with the common 

properties of the other members of the same family. C jun has been shown to be 

constitutively expressed in nearly all cell types and is necessary for normal cell cycle 

progression from G1 to S [137]. C jun is induced by UV light in cell culture models 

[138;139] and in animal models [140] . It is also highly inducible following treatment with 

dimethyl-benzanthracene (DMBA) and TPA with induction of AP-I activity [7] . The 

amount of c jun has been shown to remain relatively constant throughout the cell cycle, but it 

is phosphorylated in G2 and remains phosphorylated until mitosis is complete [ 141]. It has 

also been shown that c jun can allow an arrested cell to enter G2/M following treatment with 

UVB via interaction with p53 [142] . C jun has also been implicated in the process of tumor 

formation and progression [11; 111; 131 ; 143-145]. There has been work done on the role of 

phosphorylation in c jun activation. One study examined a number of different cell lines that 

varied in degrees of carcinogenic advancement for expression of phosphorylated c jun. It 

was seen that levels of phosphorylated c jun were increased in squamous cell lines (B9 and 

A5) and numerous malignant cell lines compared to immortalized control cells (C5N) [146] . 

Studies in human skin irradiated with UV found that levels of phosphorylated c jun was 

increased in nearly all types of skin cells, while p38 phosphorylation was increased in only 

the more differentiated cells [147]. All these data suggest that c jun is an important regulator 

of many different cellular processes. 
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Jun B is another member of the jun family of proteins that may be important in a 

number of cellular processes. For example, it may act as a negative regulator of cellular 

proliferation and promote quiescence. These actions may be through the up regulation of the 

cyclin dependent kinase inhibitor pl6 [148]. One other important aspect of jun Bis its 

ability to attenuate some of the effects of its family member c jun. There is evidence that jun 

B/c jun heterodimers bind DNA with less affinity than do c jun homodimers or c jun/c fos 

heterodimers [149]. Jun B has also been shown to repress the cyclin DI promoter, while c 

jun has been shown to activate this promoter [141;148]. Cyclin DI is important in a number 

of cell processes. It is particularly important as a cell cycle check-point as the cell moves 

into S phase. 

A third member of the AP-1 constituent protein family is jun D. It is thought that the 

role of jun D is generally to provide negative regulation for proliferation. In one study, jun D 

deficient fibroblasts were shown to exhibit increased proliferation and sensitivity to UV 

induced apoptosis, similar to fibroblasts that over-expressed c jun [150]. Loss of jun D alone 

appears to have little effect on an animal as a whole. Jun D knockout mice are viable and 

only males show impaired growth and spermatogenesis [151]. 

Another important member of the AP-1 constituent protein family is c fos. It has 

been demonstrated that c fos may be required for the progression from benign papilloma to 

malignant carcinoma [152;153]. C fos knockout mice harboring an activated ras gene treated 

with TP A have been shown to develop papillomas similar in incidence and kinetics to wild 

type animals. While papillomas on the wild type animals progressed into malignant 

carcinomas as expected, c fos knockouts were unable to undergo malignant transformation 
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[152]. It has also been shown that the target genes of the/as oncogene may be crucial in the 

transformation to malignancy [153]. 

Fra-1 is another member of the fos family of AP-1 constituent proteins. Fra-1 has 

been examined in a number of different studies, but there has not been much of a conclusion 

reached as of yet to its function in the cell. This is due in part to some contrasting evidence. 

It has been shown to be up regulated in immortalized fibroblasts treated with serum [154] but 

down regulated in A431 cells treated with UVB [155]. Experiments done in HeLa cells that 

c jun/fra-1 heterdimers have lower transactivating capability than do c jun/c jun homodimers 

[156]. In addition, fra-1 was shown to attenuate TPA induced AP-1 activity [156]. 

However, in other cell lines fra-1 is induced by TPA (adrenocortical line) [157], UVA 

(HaCaT keratinocytes) [158] and diesel exhaust particles (lung cell line) [159]. It is clear 

that more work needs to be done in order to better understand the role that fra-1 has in 

normal cellular processes and in tumor formation. 

A member of the fos family similar to fra-1 is fra-2. One study suggested that 

treatment with cAMP increases the amount of fra-2 present in human myeloma cells and 

increases binding of jun/fra-2 heterodimers to AP-1 sequences [160]. This results in an 

inhibition of IL-6 induced growth, suggesting that fra-2 may act as a negative regulator of 

proliferation. Also, in melanoma cell lines, an increase in fra-2 levels brought about by 

treatment with resveratrol resulted in a decrease in AP-1 :DNA binding and transcriptional 

activities [161]. In this same study, cells over-expressing fra-2 showed a decreased response 

to TPA induced transcriptional transactivation. This leads one to believe that fra-2 may 

protect the cell against unwanted proliferation and transformation. 
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Using this knowledge, it is possible to classify the AP-1 constituent proteins into two 

basic categories: proteins that seem to be positive regulators of proliferation and those that 

appear to function as negative regulators of proliferation (See table 1 ). These classifications 

are to be used in order to better understand the possible role that each member plays in the 

regulation of cellular proliferation. They are not definitive or strict classifications by any 

means, as there is conflicting data in the literature about many of the AP-1 constituents in 

different models. 

Table 1. AP-1 constituent proteins as positive and negative regulators of cellular 

proliferation. 

AP-1 Constituent Protein General Re~ulatin~ Role 
CJUil positive 
junD negative 
jun B negative 
c fos positive 
fra-1 positive or negative (depends on model) 
fra-2 negative 

Summary 

Using this knowledge, we hypothesized that UVB would increase the levels of AP-1 

constituent proteins thought to promote growth. We also believed that dietary energy 

restriction would decrease the levels of the AP-1 constituent proteins thought to enhance 

proliferation while increasing the levels of the AP-1 constituents thought to be negative 

regulators of cellular proliferation. To do this, we performed a time-course on SKH-1 

hairless mice to study the effects ofUVB on the AP-1 constituents over a 24 hour period. 

We then performed another study in which we subjected SKH-1 mice to either a control diet 
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fed ad /ibitum or a DER diet for 10-12 weeks, treated the animals with UVB or mock treated 

them, and analyzed the resulting modulation by DER using western blot analysis. 
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CHAPTER 2. EFFECT OF UVB RADIATION ON AP-1 CONSTITUENT PROTEINS 
AND MODULATION BY DIETARY ENERGY RESTRICTION IN SKH-1 MICE 

Note from the author: The work contained in the second chapter of this thesis was primarily 

collected and analyzed by Brian Hopper. However, it must be noted that the AP-1 :DNA 

binding studies for the time-course were performed by Dr. Haw-wen Chen and Dr. Joseph 

Przybyszewski (Figure 5). In addition, the AP-1 :DNA binding study completed in the 

dietary energy restriction experiment was performed by Dr. Joseph Przybyszewski (Figure 

6). 



www.manaraa.com

42 

CHAPTER 2. EFFECT OF UVB RADIATION ON AP-1 CONSTITUENT PROTEINS 
AND MODULATION BY DIETARY ENERGY RESTRICTION IN SKH-1 MICE 

A paper to be submitted to Carcinogenesis 
Brian D. Hopper, Joseph Przybyszewski, Haw-wen Chen and Diane F. Birt 

Interdepartmental Toxicology Program and Dept of Food Science and Human Nutrition 
Iowa State University, Ames 

Abstract 

The study reported here examined the timing of modulation of the production of 

activator protein 1 (AP-1) constituent proteins by ultraviolet B (UVB) radiation and the effect 

of dietary energy restriction (DER, 40% reduction in calories from fat and carbohydrate 

compared to control diet) on these proteins in SKH-1 mouse epidermis using western blot 

analysis and electromobility shift assay (EMSA). The timing of modulation of the 

production of these proteins was examined at 0 hr (mock treatment), 3 hr, 9 hr, 18 hr, and 24 

hr after treatment with a tumor promoting suberythemal dose (750mJ/cm2) ofUVB light 

(31 l-313nm). We found that c-jun (9 hrs),jun-B (9 and 18 hrs), fra-1 (18 hrs), and 

phosphorylated c-jun (3 hrs) levels were increased after UVB treatment compared to mock 

controls. AP-1 :DNA binding was also increased in a biphasic manner after UVB treatment 

with peaks at 3 and 18 hours post irradiation. In a second experiment, animals were placed 

on DER or control diet and treated with UVB as before. DER was found to completely block 

the UVB induced increase in phosphorylated c jun levels and decrease in fra-2 levels at 18 

hrs. In addition, DER enhanced the UVB induced increase in jun B and lowered basal levels 

of c fos seen 18 hours after UVB. DER reduced basal levels of AP-1 :DNA binding in both 

control fed and DER mice 3 hours after UVB treatment. These data suggest that DER may 

be able to assist in the prevention ofUVB induced skin carcinogenesis by modulating AP-1 

constituent protein levels and AP-1 :DNA binding. 
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Introduction 

Skin cancer incidence is increasing in the U.S. and around the world [1 ;2]. The 

Centers for Disease Control (CDC) predicts that more that 1 million new cases of skin cancer 

will be diagnosed in the United States this year alone. As this disturbing trend increases, it is 

apparent that more information is needed on the mechanism of ultraviolet (UV) induced 

carcinogenesis and strategies for prevention must be devised. Previous studies using cell 

culture and animal models have suggested that the nuclear transcription factor activator 

protein 1 (AP-1) may play an important role in the development of this cancer [3-7]. AP-1 is 

important as a transcription factor because it regulates a number of genes important for cell 

growth and regulation and tissue remodeling, including cyclin D 1, type 1 collagenase, and 

several matrix metalloproteinases (MMP's). This provides an indication that AP-1 may be 

important in the formation of skin cancer. Studies have shown that AP-1 transactivation is 

necessary for the growth of chemically induced skin tumors. Experiments using the JB6 cell 

model have demonstrated that AP-1 activation is necessary for promotion of these cells [3;8]. 

Cell culture models have also revealed that expression of a transcriptionally inactive form of 

c jun in cells inhibits AP-1 transactivation and results in decreased anchorage independent 

growth [9; 1 O] . Studies in mice that express this same transcriptionally inactive form of c jun 

have shown that 12-0-tetradecanoylphorbol 13-acetate (TPA) induced AP-1 activation is 

inhibited. This inhibition is accompanied by decreased papilloma incidence (11] . In 

addition, previous studies in the our lab have shown that dietary energy restriction (DER, a 

40% reduction in the number of calories consumed) can inhibit the activation of AP-1 by 

TPA and decrease papilloma and carcinoma formation [4;12;13]. AP-1 has been shown to be 

transcriptionally active as a jun family homodimer or ajun/fos heterodimer (14-16]. It has 
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been shown that the constituents of the dimer may lend differential activating ability to the 

AP-1 transcription factor in multiple tissues [17-22]. Because of this data and the fact that 

UV light has been implicated in human skin cancer, we hypothesized that DER may inhibit 

cancer formation by modulating the ability of UVB to change the levels of the jun and fos 

family proteins and alter AP-1 :DNA binding in the epidermis of SKH-1 hairless, 

immunocompetent mice. In addition, it was hypothesized that DER may be able to increase 

the basal levels of negative growth regulating AP-1 constituent proteins Gun B, fra-2, jun D) 

and decrease basal levels of the positive growth regulating AP-1 constituent proteins ( c jun, c 

fos). Changes in AP-1 constituent protein levels were measured by western blot. Effects of 

DER on AP-l:DNA binding were measured by electrophoretic mobility shift assay. We first 

determined a 24 hour time course of protein level changes and 32 hour time-course of AP-

1 :DNA binding following UVB treatment. Then the effect of DER the levels of AP-1 

constituent protein and AP-1 :DNA binding were assessed in UVB and mock treated animals. 

Materials and Methods 

Animals and Diet 

Female SKH-1 mice were purchased from Charles River Labs (Wilmington, MA). 

The mice were housed individually in a 73°F, 40% humidity room on a 12hr light/dark cycle. 

Tap water was available at all times. Diets were prepared using ingredients purchased from 

Harlan Teklad Premier Laboratory Diets (Madison, WI) or prepared according to our 

specifications by Harlan Teklad Premier Laboratory Diets (Madison, WI) [23]. Diets were 

stored at -20°C and were used within 3 months of purchase, with the exception of the control 

diet used in the time-course, which was used within 6 months of purchase. Animals were fed 

the ad libitum (AL) control diet for 2 weeks after arrival for an acclimatization period, after 
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which the experimental diets were administered. DER diets were formulated so DER mice 

received 60% of the total calories that AL animals consumed, with the removal of calories 

coming from a reduction in fat and carbohydrates. All micronutrients were consistent 

between the two diets. Mice on ad libitum diets were given fresh diet weekly and the food 

consumption of these animals was monitored. DER mice were fed daily at 5:00 p.m an 

amount of diet that corresponded to 40% fewer calories than the AL mice. Animals were 

treated with 750mJ/cm2 UVB as described below after 12 weeks on the diet. Collections of 

whole cell lysates were performed 18 hours after UVB treatment and nuclear extracts were 

collected 3 hours after treatment in the DER study. This was decided after performing time­

course experiments and determining the time of maximal difference from untreated levels. 

Treatments 

On the day of sacrifice, animals were treated with 750mJ/cm2 UVB radiation or 

placed in the treatment chamber without the UVB lamp on for 26 min (mock treatment). The 

treatment chamber consisted of a 4ft x 1 ft x 1 ft steel box with 2 ultraviolet B lamps (Phillips 

F40UVB 40 watt). The amount ofUVB light incident upon the animals was measured using 

a UVX radiometer (model UVX-31, UVP, Upland, CA) and was an average of 

measurements taken from 3 locations inside the chamber. 

Collection of Epidermal Whole Cell Lysates 

Epidermal whole cell lysates were collected from SKH-1 mouse dorsal skin that had 

been treated with 750mJ/cm2 UVB light or mock treated. Samples were collected by 

excising the dorsal skin and removing the subcutaneous fat layer by scraping. The skin was 

then placed in liquid nitrogen and the epidermis was removed by scraping. Scrapings were 
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then placed in lysis buffer and homogenized. Samples were centrifuged and supematants 

collected. A more detailed description was published previously [24]. 

Western Blot Analysis 

The protein concentration in each lysate was determined using the bicinchoninic acid 

and copper sulfate protein assay (Sigma, St. Louis, MO). For the western blot separation, an 

equal amount of protein from each lysate (from 25-lOOµg, depending on the protein) was 

diluted with 2X Laemmli sample buffer [(4.0g sodium dodecyl sulfate (SDS), 25mL 

Tris/SDS (6.05g Tris base, 0.4g SDS, 25mL water), 20mL glycerol, 2ml ~-mercaptanol, lmg 

bromophenol blue, water to lOOml)] and denatured in a steam bath for 3-5 min. Separation 

of the AP-1 constituent proteins was carried out on a discontinuous ( 4% stacking, 10% 

resolving) sodium dodecyl sulfate-polyacrylamide (30% acrylamide/bis solution, BioRad, 

Hercules, CA) gel, followed by transfer to a PVDF membrane (BioRad) at 80-1 OOV for 3 

hours. For c-jun, jun b, jun d, fra-1, fra-2 and phosphorylated c jun (p-c jun), rabbit 

polyclonal antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) were diluted 1 :200. P-c­

jun is c jun that has been phosphorylated at Ser 63 and/or Ser 73. C fos rabbit polyclonal 

antibody (Oncogene, Cambridge, MA) was also used 1 :200. The secondary antibody (goat, 

anti-rabbit IgG, HRP conjugated, Santa Cruz Biotechnology, Santa Cruz, CA) was used 

1: 1000. Detection was accomplished using ECLPlus detection system (Amersham 

Biosciences, Piscataway, NJ) and the Storm 840 chemiluminescent imager. Bands were 

quantified using ImagequaNT software (Molecular Dynamics). Specificity was verified 

using commercially available positive controls known to contain the protein of interest for all 

proteins (Santa Cruz Biotechnology, Santa Cruz, CA). Different gels were compared by 

using a repeat control, known to contain the protein of interest, in all gels in order to 
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normalize values from different blots. Tests were done to verify that experimental values fell 

within the linear range of protein concentration for the amount of each antibody used 

(Appendix I). 

Isolation of Nuclear Proteins 

Nuclear proteins were isolated from the epidermal tissue of mice that had been treated 

with 750 mJ/cm2 UVB or mock treated as previously described [25]. Briefly, the dorsal skin 

was excised, subcutaneous fat was removed, and the skin was placed in Hank's balanced salt 

solution containing 0.08% EDTA (HBSSE, 5.33mM KCl, 0.336mM Na2HP04, 0.441mM 

KH2P04, 4.166mM NaHC03, 137.93mM NaCl, 5.556mM D-glucose (Dextrose) and 

2.15mM EDT A). After removing the dermal cell layers with 0.25% trypsin HBSSE, the 

epidermal cells were collected by scraping with a scalpel. The cells were washed in PBS and 

swollen in a hypotonic buffer (1 OmM HEPES, l.5mM MgClz, lOmM KCl, 0.5mM 

phenylmethylsulfonyl fluoride (PMSF) & 0.5mM DTT) and homogenized with a Dounce 

tissue grinder. The nuclei were spun in a microcentrifuge to form a pellet and resuspended in 

nuclear protein buffer (20mM HEPES 25% glycerol, 0.42M NaCl, 0.2 mM EDTA, 0.5mM 

DTT, 0.5mM PMSF) and centrifuged again. Nuclear proteins from the supernatant were 

quantified using the Coomassie Plus-200 assay (Pierce Chemical Company, Rockford, IL). A 

more detailed description was published previously [25]. 

Electrophoretic Mobility Shift Assay (EMSA) 

AP-1 :DNA binding and the proteins comprising the active AP-1 complex were 

examined using an EMSA method modified from one previously described [4]. Binding 

reactions, consisting of approximately 150,000 cpm of 32P-radiolabeled AP-1 consensus 

sequence, 0.5ug poly(dldC) and 15µg nuclear protein from a single mouse, were incubated at 
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room temperature for 10 min and loaded onto a pre-run 5% non-denaturing polyacrylamide 

gel, electrophoresed and the resulting gel was dried and exposed to a phosphoscreen 

overnight prior to detection by a Molecular Dynamics Phosphorimager (Sunnyvale, CA) in 

phosphor mode. 

Statistics 

Changes in body weight over time were analyzed by one-way analysis of variance 

(ANOVA) and differences between mean values were examined by t-test. In the time course 

experiment, differences between times (mock treatment or UVB treatment followed by 

sacrifice at 3, 9, 18, or 24 hours after treatment) for each protein were analyzed by one-way 

ANOV A. If the ANOVA analysis showed that the means were significantly different, 

Dunnett's test was used to determine differences between various time periods. In instances 

where Bartlett's test showed that the variances between time points were significantly 

different, the Kruskal-Wallis test and Dunn's multiple comparison tests were used in place of 

one-way ANOVA and Dunnett's test, respectively. In the DER experiment, two-way 

ANOVA was used to examine interactions between treatments and to test for differences due 

to diet and UVB treatment. Differences between group means were analyzed by t-test. 

Statistical significance for all measurements was set at P<0.05. 

Results 

DER experiment body weights 

Body weights of both ad libitum (AL) fed and energy restricted (DER) SKH-1 mice 

are shown in Figure 1. Both groups gained weight during the two-week adjustment period. 

The AL animals continued to gain weight throughout the end of the study (increase of 21 % 

from week 0 to week 12 of the experiment). DER animals rapidly lost weight for the first 3 
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weeks of energy restriction (weeks 1-3 of the experiment). From week 0 to week 12, DER 

animals lost 18% of their body weight. At the end of the study, mice on the DER diet 

weighed significantly less than those in the AL diet group ( 41 % difference, P<0.001 ). 

Timing of UVB induction of AP-1 constituent protein levels 

The objective of this experiment was to determine the impact ofUVB treatment on 

the constituents of the AP-1 transcription factor from 0-24 hours following UVB treatment. 

Results from a typical western blot of jun D are shown in Figure 2 and the results for 8-11 

observations per time point are shown graphically in Figure 3 panels A and B. One-way 

ANOV A showed a difference in mean protein levels between times inc jun (P=.025) and jun 

B (P=0.0034). Kruskal-Wallis analysis revealed differences in mean protein levels between 

times in phosphorylated c jun (p-c jun, P=0.026) and fra-1 (P=0.0245). Dunnett's test 

showed that after treatment with UVB, c jun increased maximally by 85.2% (P<0.001) at 9 

hours after treatment when compared with the mock treated group (fig 3A). The level of jun 

B was significantly increased by 110% (P<0.05) at 9 hours and 122% (P<0.001) at 18 hours 

after treatment (fig 3A), according to Dunnett's test. The amount of p-c jun in the cells also 

increased following UVB treatment, with a significant elevation at 3 hours (154% P<0.05) 

and a non-significant increase 9 hours (166%) after the treatment with UVB (fig. 3A) as 

shown by Dunn's test. Dunn's test also showed a significant increase (103%, P<0.05) due to 

UVB treatment at 18 hours (fig 3B). There was no significant effect on the level of jun D 

(fig 3A), c fos (fig 3B), or fra-2 (fig 3B) after treatment with UVB. 

Modulation of UVB effect on AP-1 constituent proteins by DER 

Detection and determination of protein abundance in control and DER epidermal skin 

18 hours after UVB treatment was performed using western blot analysis. The results are 
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shown in Figure 4A and 4B. Two-way ANOVA revealed significant differences due to UVB 

treatment in the protein levels of cjun (P=0.0283),jun B (P<0.0001), c fos (P=0.012), and 

fra-1 (P=0.0091). Two-way ANOVA also showed significant effects due to diet in the level 

of c fos protein (P=0.0091) and a significant interaction between the UVB treatment and diet 

in jun B (P=0.0184) and fra-2 (P=0.0409). 

T test analysis of the differences between group means inc jun showed the AL/Mock 

group was different from both the AL/UVB (P=0.0274) and DER/UVB (P=0.0413) groups. 

The DER/Mock group was also significantly different from the AL/UVB group (P=0.0452). 

When analysis by t test was performed on p-c jun group mean protein levels, it was 

discovered that there was a significant difference between the AL/Mock group and the 

AL/UVB group (P=0.0345). Analysis of group means of jun B protein levels by t test 

revealed significant differences between AL/Mock and DER/UVB (P=0.0003), AL/UVB and 

DER/Mock (P=0.0115), and DER/Mock and DER/UVB (P<0.0001). 

C fos analysis by group means showed significant differences between AL/Mock and 

DER/Mock (P=0.0071), AL/UVB and DER/Mock (P=0.0024), and DER/Mock and 

DER/UVB (P=0.0320). Fra-1 protein levels were significantly different between AL/UVB 

and DER/Mock groups (P=0.0355) and DER/Mock and DER/UVB groups (P=0.0343). T 

test analysis also showed differences in group mean in the Fra-2 protein levels between 

AL/Mock and AL/UVB (P=0.0086) and AL/UVB and DER/UVB (P=0.0037). 

Timing of AP-l:DNA binding changes following UVB treatment 

The AP-1 :DNA binding was increased bi-modally following treatment with UVB 

(Figure 5). There was a significant, but transient, increase at 3 hours after UVB treatment 

(P<0.0001). At 9 hours after the treatment there was no difference from the untreated control 
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group. However, there was a significant increase in AP-1 :DNA binding at 12 hours 

(P<0.002), 18 hours (P<0.0001), and 24 hours (P<0.001) after treatment with UVB. At 32 

hours, the binding affinity appeared to return to a level near that of the untreated control. 

Effect of DER on AP-l:DNA binding 

DER inhibited AP-1 :DNA binding in both UVB treated and mock treated groups 

(Figure 6). Analysis by two-way ANOV A revealed that there was a statistically significant 

difference due to the diet (p=0.0213). There was no difference due to UVB treatment and 

there was no interaction between diet and treatment. T-test analysis showed that there were 

no differences between individual treatment groups. 

Discussion 

UVB has been shown to be a complete carcinogen in albino mice [26] and has been 

implicated in the formation of human skin cancer. Because the transcription factor AP-1 has 

been implicated in the process of skin carcinogenesis [11; 127], we examined the effect UVB 

treatment on the activator protein 1 (AP-1) transcription factor, looking at both AP-1 :DNA 

binding and changes in the levels of the AP-1 constituent proteins. Also, dietary energy 

restriction (DER) has previously been shown to be an effective inhibitor of chemically 

induced skin carcinogenesis in animal models [13;27]. The current study used control and 

DER diets fed to SKH-1 hairless mice to better understand the mechanisms by which DER 

might inhibit the formation of UVB induced skin cancer. 

Our findings showed that UVB treatment increased the amount of c jun, jun B, and 

fra-1 proteins in the epidermis of control fed SKH-1 mice in a time dependent manner. 

Previous studies have shown that UV can increase the level of c jun, in cell culture models 

(HeLa cells [28], keratinocytes [29]), animal models (SENCAR mice [30]), and human skin 
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[31]. Studies examining jun B have discovered that UV can increase the levels of this 

protein in HaCaT keratinocytes [32], fibroblasts [33], and human skin [32]. Fra-1 protein 

levels can be either increased [34] or decreased [35] by UV radiation, depending on the 

wavelengths of light used and the cell models studied. 

Although there was no significant effect of UVB treatment on the levels of c fos seen 

in the time-course study, there was a significant increase in the level of c fos protein 

observed in the DER experiment in both the AL and DER fed animals. Examination of the 

literature showed that some studies have revealed increases in the level of c fos following 

UVB treatment (HaCaT keratinocytes [32], SEN CAR mice [30]), while others have seen no 

effect on c fos in A431 cells [35] or hairless mice [36] following UVB treatment. 

The time-course showed that 3 hours after UVB treatment, the level of p-c jun in the 

epidermis was increased and that it remained elevated throughout the 24 hour period. In the 

DER study, the level of p-c jun was significantly increased in the AL fed mice 18 hours after 

UVB treatment compared to untreated control animals. No such increase was seen in DER 

animals treated with UVB compared with untreated control DER animals. 

UVB treatment has no effect on the level of jun D present in the epidermis, neither in 

the time-course study nor in the AL or DER fed animals in the diet study. This correlates 

well with what has been seen in the literature. Cell culture work in keratinocytes suggests 

that Jun D is constitutively expressed and that the levels of Jun D proteins are not often 

altered [37;38]. 

There were no significant changes observed in fra-2 following UVB treatment during 

the time-course study. However, in the diet study, UVB decreased the level of fra-2 present 

in the epidermis 18 hours after the UVB treatment in AL fed animals. There was no 
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observed effect due to UVB treatment in DER mice. A study by Ariizumi using UVB treated 

A431 cells showed a similar decrease in fra-2 [35]. 

Previous work showed that Sencar mice treated with TP A significantly increased the 

amount of c jun and fra-1 present in the epidermis, with maxima at four and six hours, 

respectively, after application of TP A. In addition, increases were seen in c fos at three, four, 

and six hours post treatment. Jun B was increased at four hours after treatment and stayed 

elevated through 24 hours (Przybyszewski, et. al. unpublished). 

Treatment with UVB was able to increase AP-l:DNA binding 3, 9, 18, and 24 hours 

after irradiation of SKH-1 epidermis compared to mock treated control animals. Other work 

has also shown that AP-1 :DNA binding is increased following UVB treatment in both animal 

and cell culture models [38;39]. 

In the diet experiment, UVB did not significantly increase AP-1 :DNA binding in the 

epidermis of UVB irradiated mice. However, like it's effect on c fos protein levels, DER 

was able to decrease basal AP-1 :DNA binding, suggesting a possible mechanism of 

modulation of cellular transcription by DER. 

UVB was able to increase the levels of c jun and fra-1 in the epidermis of treated 

mice, with no apparent effects of diet on the increase. This correlated well with the data 

obtained in the time-course suggesting that UVB can increase the amount of these two 

proteins in the epidermis. 

The level of jun B in the epidermis of UVB treated animals was also increased in both 

AL and DER mice. Interestingly, DER enhanced the increase in jun B seen when the mice 

were treated with UVB. The level of jun B in AL fed mice increased non-significantly by 

54%, while DER fed animals saw a significant increase of 354% (P<0.0001). This may lend 
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further support to the notion that Jun B may play a protective role as a negative regulator of 

cell proliferation [33;40]. UVB treatment led to a decrease in the amount of fra-2 protein in 

AL mice, but that decrease was not seen in DER mice. This may also provide additional 

evidence for the theory that fra-2 may be protective against skin cancer formation [20;41 ;42]. 

DER was able to decrease the basal amount of c fos in the epidermis. Although the level of c 

fos present in the epidermis was not statistically different between the two diets 18 hr 

following UVB treatment, the amount present in the DER mice was 51 % less than the 

amount in the AL group. 

Neither the AL nor DER diet was able to inhibit UVB induced increases in the 

amount of c fos present in the epidermis in the diet experiment. However, it must be pointed 

out that DER was able to decrease the basal levels of c fos present in the mock treated 

animals. This may be important because changes in the basal levels of c fos may have 

unknown effects on other parameters measured. For example, c fos has been shown to be a 

substrate for p38. After p38 phosphorylates c fos, there is a resulting increase in AP-1 

transcription [43]. Less c fos present in the cell prior to UVB treatment may result in a 

change in transcription of products important in the cellular response to UVB. 

Basal levels of phosphorylated c jun were unchanged in mice that were mock treated 

but on different diets. In AL mice treated with UVB, there was an increase of 158% in the 

amount of phosphorylated c jun in the epidermis. Interestingly, the increase in p-c jun seen 

in the AL group following UVB treatment was not seen in the DER group. It appears that 

DER may inhibit the ability of UVB to increase the amount of phosphorylated c jun in the 

epidermis. This may prove to be an important discovery as it suggests that DER has the 

ability to alter phosphorylation status of the AP-1 constituent proteins. 
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It must be noted that the phosphorylation status of the proteins may not have been 

the same as when the proteins were first obtained. Cellular phosphatase activity can be 

inhibited in the whole cell lysate by adding sodium fluoride and sodium vanadate to the lysis 

buffer. However, these sodium salts were not added to the lysis buffer, resulting in the 

possiblility of alterations in the measurable amounts of phosphorylated c jun. This may 

make it more difficult to interpret the phosphorylated c jun findings. Subsequent studies in 

our lab with NIH3T3 cells and epidermis from CF-1 mice have shown that there was no 

difference in the level of phosphorylated c jun collected in lysis buffer that has no sodium 

vanadate and sodium fluoride added and lysis buffer in which these compounds have been 

added. In addition, the omission of these sodium salts did not alter AP-1 :DNA binding. 

The results with phosphorylated c-jun may be explained, in part, by looking at the 

upstream kinases responsible for the phosphorylation. Previous work has shown that DER is 

able to inhibit 12-0-tetradecanoylphorbol-13-acetate (TPA) induced ERK activity in vivo, 

but DER was shown to have no effect on JNK or p38 kinase in control or TPA treated mice 

or on basal ERK activity [23]. However, TPA was not able to induce expression of JNK or 

p38 in the SENCAR mouse used in these experiments. In contrast, UVB has been shown to 

have the ability to induce the JNK and p38 kinase pathways, in addition to ERK [44-46]. 

Further investigation of the phosphorylation status of the AP-1 constituent proteins may yield 

some more important information on the role of DER in the inhibition of skin carcinogenesis. 

More work needs to be done to investigate the possible mitigating role that DER may play on 

JNK and p38 due to their important role in UV induced damage. Since the studies presented 

here predict that DER will inhibit UVB induced skin carcinogenesis, tumor studies should be 

conducted to determine whether this occurs. 
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Figure 1. Body weights of ad libitum and dietary energy restricted mice. Values 

represent the mean± SEM of 22 AL fed animals and 16 DER animals and values without 

visible error bars had error bars smaller than the symbols. Week 0 corresponds to 8 weeks of 

age. Animals in the DER group were placed on dietary energy restriction at week 0. 

Analysis of body weight by single factor AN OVA revealed a statistically significant 

difference between AL and DER fed animals (P<0.0001, single factor ANOVA). T test 

showed the mean body weights were different at week 1 of the experiment and remained that 

way until the end of the experiment (t test, P<0.0001). AL(•) and DER (a). 

Figure 2. Sample western blot of c jun protein levels in the SKH-1 mouse epidermis 

UVB treated timecourse. Lane 1 is the positive control. Lanes 2- 11 are different 

individual mice from the time-course experiment. Lane 12 is the repeat control, used for 

comparisons between gels. The 0 hour lanes correspond to mock treatment. The black arrow 

corresponds to the jun D band, at approximately 40kD. 

Figure 3A and 3B. Timing of modulation of AP-1 constituent proteins by UVB. Each 

data point represents data from 9-11 animals. Symbols show the mean± SEM and values 

without visible error bars had error bars smaller than the symbols. P-c-jun is c jun that has 

been phosphorylated at Ser 63 or Ser 73. Asterisks signify significant difference from mock 

(0 hr) treatment as analyzed by single factor ANOVA followed by Dunnett's test for each 

individual protein. In the case of unequal variances, the Kruskal-Wallis test was used in 

place of the single factor ANOVA and Dunn's multiple comparison test was used in place of 

Dunnett's test. *=P<0.05, **=P<0.001. 

Figure 4a and 4b. Effect of dietary energy restriction on UVB induced modulation of 

AP-1 constituent proteins 18 hours after UVB treatement. Values represent the mean± 
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SEM. Numbers of observations for each group are shown in parentheses. Differences 

between treatment groups for each protein were measured by two-way ANOVA. Differences 

due to diet were shown by an asterisk (P<0.05). Differences due to UVB treatment were 

shown by# (P<0.05). Interaction between UVB treatment and diet are shown by$ (P<0.05). 

If two-way ANOV A showed a significant difference, individual means were analyzed by t 

test. Results oft-tests are indicated by a<b and values with 2 letters are not different from 

values with either of the letters. Different proteins were not compared to one another. 

Figure 5. Changes in AP-l:DNA binding over a 32 hour period following UVB 

treatment. Measurements were normalized by dividing values by the mean response at time 

0. Values represent natural logarithm of the normalized values± SEM of 8-15 

observations/group. a< b (p<0.001) as measured by t-test. 

Figure 6. Effect of UVB treatment and DER on AP-l:DNA binding 3 hours after 

treatment with UVB. Values represent the mean ± SEM of 8-11 mice/group. Analysis was 

done by two-way AN OVA of the natural logarithms of each individual mouse. Two-way 

ANO VA indicated a significant difference between the diets. T test analysis of the least 

squares from the two-way ANOV A showed no differences between group means. 
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CHAPTER 3. GENERAL CONCLUSIONS 

This study examined the effect of ultraviolet light exposure on the AP-1 transcription 

factor constituent proteins in murine epidermis in the SKH-1 mouse model and the 

modulation of those effects by dietary energy restriction. We hypothesized that UVB would 

increase the levels of AP-1 constituent proteins thought to promote growth. We also 

believed that dietary energy restriction would decrease the levels of the AP-1 constituent 

proteins thought to enhance proliferation while increasing the levels of the AP-1 constituents 

thought to be negative regulators of cellular proliferation. This hypothesis was based on a 

number of observations. First of all, UV light is a known carcinogen. It has been shown that 

UV light can induce a number of changes in the amount of some of the AP-1 constituent 

proteins in the epidermis, and the AP-1 transcription factor has been implicated in the 

formation of skin tumors. Multiple studies have shown that AP-1 is necessary for the 

formation of skin cancer [1-3]. Among the AP-1 constituent proteins implicated in the 

formation of skin tumors are c jun [ 4-6], c fos [7] and fra-1 [8]. 

Also, previous evidence from the Birt lab has shown that dietary energy restriction 

can reduce both the incidence and multiplicity of DMBA initiated, TPA promoted skin 

papillomas [9;10]. Dietary energy restriction has also been shown to decrease the amount of 

c jun protein and c jun mRNA in animals treated with the tumor promoter TP A [ 11]. Other 

investigators have shown that decreased fat intake can reduce the occurrence of skin cancer 

[12] and actinic keratosis, which is a precursor of skin cancer in humans [13]. 

To test the hypothesis, we obtained SKH-1 hairless mice and subjected them to either 

an ad libitum or DER regimen. The mice were treated with UVB or mock treated and the 
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epidermal cells were collected and examined for changes in the amounts of the AP-1 

constituent proteins. Little was known about the timing of the changes in the AP-1 

constituent protein levels following UVB treatment in animals, so evaluation of the proteins 

over a timecourse of 3, 9, 18, and 24 hours after UVB treatment was performed. Maximal 

changes in protein levels generally occurred 18 hours after treatment with UVB, while AP-

1 :DNA binding increased in a biphasic manner with maxima at 3 and 18 hours after 

treatment. Initially, we chose to look at AP-1 :DNA binding at 3 hours after UVB treatment 

and protein levels 18 hours after UVB treatment. We currently have studies ongoing to 

examine AP-1 :DNA binding at 18 hours post-treatment and protein levels 3 hours post 

treatment. 

When looking at the results of the study, it is clear that UVB does have an effect on 

some of the AP-1 constituent protein levels in the epidermis. In the timecourse, it was seen 

that UVB treatment increased the amounts of c jun, phosphorylated c jun, jun B, c fos, and 

fra-1 over controls. In the DER portion of the experiment, it was seen that DER significantly 

decreased the basal level of c fos, indicating that DER has the ability to alter basal levels of 

proteins potentially important in skin tumor formation. DER was also able to inhibit the 

ability of UVB to increase the amount of phosphorylated c jun in the epidermis 18 hours after 

treatment with UVB. The basal level of phosphorylated c jun remained the same, but 

following treatment with UVB the level of phosphorylated c jun did not increase in the DER 

animal. This is potentially a very exciting discovery and could be used to predict the ability 

of DER to inhibit skin carcinogenesis by UVB. 

The results of this study give some insight as to some of the potential mechanisms of 

skin cancer prevention by DER. It also raises a number of other interesting questions. The 
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time course revealed that there was an increase in a number of the protein levels at 18 hours 

after treatment. One other glaring result from the time course was the fact that the level of 

phosphorylated c jun was significantly increased at 3 hours post treatment. This time 

corresponded with a significant increase in the AP-1 :DNA binding. Studies are underway in 

the Birt lab to examine the levels of the AP-1 constituent proteins at 3 hours after UVB 

treatment. Also, because of the intriguing effect of DER on the level of phosphorylated c jun 

and the importance of phosphorylation in the regulation of transcriptional activity, it would 

be very exciting to examine the phosphorylation patterns of the the AP-1 constituents in an 

experiment similar to the one performed here. Other possible future studies include 

examining the pathways that may be important in the process of carcinogenesis due to UVB 

exposure. Three of the main pathways include the extra-cellular signal related kinase (ERK) 

pathway, the jun N-terminal kinase (JNK) pathway, and the p38 pathway. The ERK pathway 

has been studied extensively using TPA as the promoter (14-17]. However, fewer studies 

involving UV radiation have been done. UV radiation has been shown to activate all three 

pathways. UV induction of ERK is probably the least widely studied. It has been shown in 

cell culture studies that UV radiation can increase the activity of ERK [18-20], JNK [19;21], 

and p38 [7;22]. Interestingly, it appears that UVB has the ability to induce both the ERK and 

JNK pathways, but UV A appears to only have a stimulatory effect on JNK [23]. Other 

studies involving animals and humans have found similar results [24;25]. Because of the 

central role these pathways appear to play in the cellular UV response and the known 

importance of AP-1 to tumor formation, studies involving the amounts and activities of these 

protein kinases may help to elucidate the mechanism by which DER provides its protective 

effect. 
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The mechanism by which DER exhibits its cancer preventative effects has not been 

fully elucidated. It is no doubt a complex process involving a variety of interactions. This 

work has shown that it can reduce AP-1 :DNA binding and can alter the levels of the AP-1 

constituent proteins. In addition, DER may inhibit UVB induced tumor formation in a 

number of other ways. It may alter any number of regulatory protein kinases in the cellular 

signaling pathways that lead to transcription of genes important in the formation of tumors. 

DER may also prevent tumor formation by modulating DNA methylation and acetylation, 

resulting in a change in gene transcription. Studies have shown that DER effects the levels 

of different hormones in the body, including corticosterone and insulin-like growth factor 1 

(IGF-1) [11] and leptin. There may also be other hormones that are modulated by DER that 

have not yet been examined that assist in the prevention of cancer by DER. 

This study was important for a number of reasons. First, much less work has been 

done with UVB treatment of animals than TP A treatment, even though UVB is much more 

relevant to the process of human skin carcinogenesis. If we hope to extrapolate mouse 

studies to humans, we must mimic as closely as possible all aspects of human skin 

carcinogenesis. Also, DER has been shown in a variety of different models to reduce the size 

and inhibit the incidence of skin tumors. However, the mechanism behind this inhibition is 

not yet understood. This study showed that the phosphorylation of the AP-1 constituent 

proteins may be a very important aspect of DER inhibition of carcinogenesis. 

In conclusion, we have shown that UVB possesses the ability to increase the levels of 

many of the AP-1 constituent proteins. Much of the work in the UV arena has been in the 

cell culture realm. Few studies have examined the effect of UVB treatment in animals and 

even fewer have measured the levels of the AP-1 constituent proteins. To my knowledge, no 
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one has surveyed all of the AP-1 constituent proteins following UVB treatment in an animal 

model. This is very important as some of the dimer combinations have different 

transcriptional activity than others. Also, the complexity of an animal can be simulated but 

not fully achieved in cell culture models. It is important to study the animal intact in order to 

more accurately extrapolate the results to people. DER can inhibit the UVB induced increase 

in some of the proteins and decrease the basal level of other AP-1 constituents. This work 

not only provides some insight into the molecular mechanisms of skin cancer prevention by 

DER but also raises some interesting questions that need to be answered in order to more 

fully understand the process of cancer prevention by DER. 
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APPENDIX I 
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Appendix I shows the results of the linear tests done to prove that the antibodies used were 
within the active linear range. The left lane in each blot is the positive control. Lanes 2-5 are 
loaded with 25, 50, I 00, and 150µg, respectively, of total protein. 
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